Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
BMC Plant Biol ; 24(1): 263, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594616

RESUMO

BACKGROUND: In agricultural production, fungal diseases significantly impact the yield and quality of cotton (Gossypium spp.) with Verticillium wilt posing a particularly severe threat. RESULTS: This study is focused on investigating the effectiveness of endophytic microbial communities present in the seeds of disease-resistant cotton genotypes in the control of cotton Verticillium wilt. The technique of 16S ribosomal RNA (16S rRNA) amplicon sequencing identified a significant enrichment of the Bacillus genus in the resistant genotype Xinluzao 78, which differed from the endophytic bacterial community structure in the susceptible genotype Xinluzao 63. Specific enriched strains were isolated and screened from the seeds of Xinluzao 78 to further explore the biological functions of seed endophytes. A synthetic microbial community (SynCom) was constructed using the broken-rod model, and seeds of the susceptible genotype Xinluzao 63 in this community that had been soaked with the SynCom were found to significantly control the occurrence of Verticillium wilt and regulate the growth of cotton plants. Antibiotic screening techniques were used to preliminarily identify the colonization of strains in the community. These techniques revealed that the strains can colonize plant tissues and occupy ecological niches in cotton tissues through a priority effect, which prevents infection by pathogens. CONCLUSION: This study highlights the key role of seed endophytes in driving plant disease defense and provides a theoretical basis for the future application of SynComs in agriculture.


Assuntos
Microbiota , Verticillium , Verticillium/fisiologia , Gossypium/genética , Gossypium/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Sementes/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética
2.
J Microbiol Biotechnol ; 34(5): 1-10, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38604803

RESUMO

To isolate and analyze bacteria with Verticillium wilt-resistant properties from the fermentation residue of kitchen wastes, as well as explore their potential for new applications of the residue. A total of six bacterial strains exhibiting Verticillium wilt-resistant capabilities were isolated from the biogas residue of kitchen waste fermentation. Using a polyphasic approach, strain ZL6, which displayed the highest antagonistic activity against cotton Verticillium wilt, was identified as belonging to the Pseudomonas aeruginosa. Bioassay results demonstrated that this strain possessed robust antagonistic abilities, effectively inhibiting V. dahliae spore germination and mycelial growth. Furthermore, P. aeruginosa ZL6 exhibited high temperature resistance (42o C), nitrogen fixation, and phosphorus removal activities. Pot experiments revealed that P. aeruginosa ZL6 fermentation broth treatment achieved a 47.72% biological control effect compared to the control group. Through activity tracking and protein mass spectrometry identification, a neutral metalloproteinase (Nml) was hypothesized as the main virulence factor. The mutant strain ZL6ΔNml exhibited a significant reduction in its ability to inhibit cotton Verticillium wilt compared to the strain P. aeruginosa ZL6. While the inhibitory activities could be partially restored by a complementation of nml gene in the mutant strain ZL6CMΔNml. This research provides a theoretical foundation for the future development and application of biogas residue as biocontrol agents against Verticillium wilt and as biological preservatives for agricultural products. Additionally, this study presents a novel approach for mitigating the substantial amount of biogas residue generated from kitchen waste fermentation.

3.
Genes (Basel) ; 15(3)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38540407

RESUMO

Chromatin remodelers are essential for regulating plant growth, development, and responses to environmental stresses. HIT4 (HEAT-INTOLERANT 4) is a novel stress-induced chromatin remodeling factor that has been less studied in abiotic stress and stress resistance, particularly in cotton. In this study, we conducted a comprehensive analysis of the members of the HIT4 gene family in Gossypium hirsutum using bioinformatics methods, including phylogenetic relationships, gene organization, transcription profiles, phylogenetic connections, selection pressure, and stress response. A total of 18 HIT4 genes were identified in four cotton species, with six HIT4 gene members in upland cotton. Based on the evolutionary relationships shown in the phylogenetic tree, the 18 HIT4 protein sequences were classified into four distinct subgroups. Furthermore, we conducted chromosome mapping to determine the genomic locations of these genes and visually represented the structural characteristics of HIT4 in G. hirsutum. In addition, we predicted the regulatory elements in HIT4 in G. hirsutum and conducted an analysis of repetitive sequences and gene collinearity among HIT4 in four cotton species. Moreover, we calculated the Ka/Ks ratio for homologous genes to assess the selection pressure acting on HIT4. Using RNA-seq, we explored the expression patterns of HIT4 genes in G. hirsutum and Gossypium barbadense. Through weighted gene co-expression network analysis (WGCNA), we found that GHHIT4_4 belonged to the MEblue module, which was mainly enriched in pathways such as DNA replication, phagosome, pentose and glucuronate interconversions, steroid biosynthesis, and starch and sucrose metabolism. This module may regulate the mechanism of upland cotton resistance to Verticillium wilt through DNA replication, phagosome, and various metabolic pathways. In addition, we performed heterologous overexpression of GH_D11G0591 (GHHIT4_4) in tobacco, and the results showed a significant reduction in disease index compared to the wild type, with higher expression levels of disease resistance genes in the transgenic tobacco. After conducting a VIGS (virus-induced gene silencing) experiment in cotton, the results indicated that silencing GHHIT4_4 had a significant impact, the resistance to Verticillium wilt weakened, and the internode length of the plants significantly decreased by 30.7% while the number of true leaves increased by 41.5%. qRT-PCR analysis indicated that GHHIT4_4 mainly enhanced cotton resistance to Verticillium wilt by indirectly regulating the PAL, 4CL, and CHI genes. The subcellular localization results revealed that GHHIT4_4 was predominantly distributed in the mitochondria and nucleus. This study offers preliminary evidence for the involvement of the GHHIT4_4 in cotton resistance to Verticillium wilt and lays the foundation for further research on the disease resistance mechanism of this gene in cotton.


Assuntos
Gossypium , Verticillium , Gossypium/metabolismo , Verticillium/genética , Filogenia , Resistência à Doença/genética , Mapeamento Cromossômico
5.
Int J Biol Macromol ; 263(Pt 1): 130072, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346615

RESUMO

MYB transcription factor despite their solid involvement in growth are potent regulator of plant stress response. Herein, we identified a MYB gene named as StoMYB41 in a wild eggplant species Solanum torvum. The expression level of StoMYB41 was higher in root than the tissues including stem, leaf, and seed. It induced significantly by Verticillium dahliae inoculation. StoMYB41 was localized in the nucleus and exhibited transcriptional activation activity. Silencing of StoMYB41 enhanced susceptibility of Solanum torvum against Verticillium dahliae, accompanied by higher disease index. The significant down-regulation of resistance marker gene StoABR1 comparing to the control plants was recorded in the silenced plants. Moreover, transient expression of StoMYB41 could trigger intense hypersensitive reaction mimic cell death, darker DAB and trypan blue staining, higher ion leakage, and induced the expression levels of StoABR1 and NbDEF1 in the leaves of Solanum torvum and Nicotiana benthamiana. Taken together, our data indicate that StoMYB41 acts as a positive regulator in Solanum torvum against Verticillium wilt.


Assuntos
Ascomicetos , Solanum melongena , Solanum , Verticillium , Solanum/genética , Verticillium/metabolismo , Ascomicetos/metabolismo , Solanum melongena/genética , Doenças das Plantas/genética , Resistência à Doença/genética , Gossypium/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397116

RESUMO

Verticillium wilt (VW) is an important and widespread disease of cotton and once established is long-lived and difficult to manage. In Australia, the non-defoliating pathotype of Verticillium dahliae is the most common, and extremely virulent. Breeding cotton varieties with increased VW resistance is the most economical and effective method of controlling this disease and is greatly aided by understanding the genetics of resistance. This study aimed to investigate VW resistance in 240 F7 recombinant inbred lines (RIL) derived from a cross between MCU-5, which has good resistance, and Siokra 1-4, which is susceptible. Using a controlled environment bioassay, we found that resistance based on plant survival or shoot biomass was complex but with major contributions from chromosomes D03 and D09, with genomic prediction analysis estimating a prediction accuracy of 0.73 based on survival scores compared to 0.36 for shoot biomass. Transcriptome analysis of MCU-5 and Siokra 1-4 roots uninfected or infected with V. dahliae revealed that the two cultivars displayed very different root transcriptomes and responded differently to V. dahliae infection. Ninety-nine differentially expressed genes were located in the two mapped resistance regions and so are potential candidates for further identifying the genes responsible for VW resistance.


Assuntos
Verticillium , Melhoramento Vegetal , Mapeamento Cromossômico , Locos de Características Quantitativas , Perfilação da Expressão Gênica , Gossypium/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas
7.
Microorganisms ; 12(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38399669

RESUMO

Verticillium dahliae, a fungal pathogen that affects more than 200 plant species, including tomatoes, requires specific proteins for its early steps in plant infection. One such crucial protein, VdPBP1, exhibits high expression in the presence of tomato roots. Its 313-amino acid C-terminal section restores adhesion in nonadhesive Saccharomyces cerevisiae strains. To uncover its role, we employed a combination of bioinformatics, genetics, and morphological analyses. Our findings underscore the importance of VdPBP1 in fungal growth and pathogenesis. Bioinformatic analysis revealed that the VdPBP1 gene consists of four exons and three introns, encoding a 952-codon reading frame. The protein features a 9aaTAD domain, LsmAD, and PAB1 DNA-binding sites, as well as potential nuclear localization and transmembrane helix signals. Notably, the deletion of a 1.1 kb fragment at the gene's third end impedes microsclerotia formation and reduces pathogenicity. Mutants exhibit reduced growth and slower aerial mycelial development compared to the wild type. The VdPBP1 deletion strain does not induce disease symptoms in tomato plants. Furthermore, VdPBP1 deletion correlates with downregulated microsclerotia formation-related genes, and promoter analysis reveals regulatory elements, including sites for Rfx1, Mig1, and Ste12 proteins. Understanding the regulation and target genes of VdPBP1 holds promise for managing Verticillium wilt disease and related fungal pathogens.

8.
Int J Biometeorol ; 68(2): 199-209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38010415

RESUMO

China produces and consumes the largest amount of cotton, playing a critical role in the world's fiber and textile industries. Theoretically, an increase in temperature poses a complex set of impacts on both cotton and pathogen diseases. However, empirical evidence regarding the overall effect on regional cotton yield in China is currently lacking. In this study, we employ county-level cotton statistics and degree-day indices (n = 30,502) to demonstrate a temperature effect on cotton yield, influenced by both direct temperature effects and indirect effects on verticillium wilt infection in China. Our findings indicate that temperatures between the base growing temperature (15 °C) and the optimal infection threshold for cotton wilt disease (25 °C) reduce cotton yield. However, beyond this threshold, when disease infection is significantly limited, higher temperatures become beneficial. Temperatures exceeding 32 °C causes heat stress, which dominates and drives a decline in yield. Furthermore, we provide a risk assessment of warming on cotton in future climate scenarios. Our model projections reveal an overall decrease in cotton yield ranging from 6.2 to 30.6%, accompanied by amplified heat stress (resulting in a yield decrease of 11.6 to 48.7%) but a reduced threat of verticillium wilt (yield increase of 8.2 to 23.6%) in future. Particularly, the Northwest Region, currently responsible for 80% of cotton production, is expected to be particularly vulnerable. This study emphasizes the importance of investing in long-term technological advancements such as cotton heat-tolerance breeding and redistributing cotton growing areas.


Assuntos
Verticillium , Temperatura , Doenças das Plantas/prevenção & controle , Resistência à Doença , Gossypium , China , Proteínas de Plantas
9.
Phytopathology ; 114(1): 61-72, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37530500

RESUMO

Endophytes play important roles in promoting plant growth and controlling plant diseases. Verticillium wilt is a vascular wilt disease caused by Verticillium dahliae, a widely distributed soilborne pathogen that causes significant economic losses on cotton each year. In this study, an endophyte KRS015, isolated from the seed of the Verticillium wilt-resistant Gossypium hirsutum 'Zhongzhimian No. 2', was identified as Bacillus subtilis by morphological, phylogenetic, physiological, and biochemical analyses. The volatile organic compounds (VOCs) produced by KRS015 or its cell-free fermentation extract had significant antagonistic effects on various pathogenic fungi, including V. dahliae. KRS015 reduced Verticillium wilt index and colonization of V. dahliae in treated cotton seedlings significantly; the disease reduction rate was ∼62%. KRS015 also promoted plant growth, potentially mediated by the growth-related cotton genes GhACL5 and GhCPD-3. The cell-free fermentation extract of KRS015 triggered a hypersensitivity response, including reactive oxygen species (ROS) and expression of resistance-related plant genes. VOCs from KRS015 also inhibited germination of conidia and the mycelial growth of V. dahliae, and were mediated by growth and development-related genes such as VdHapX, VdMcm1, Vdpf, and Vel1. These results suggest that KRS015 is a potential agent for controlling Verticillium wilt and promoting growth of cotton.


Assuntos
Acremonium , Ascomicetos , Verticillium , Bacillus subtilis/genética , Filogenia , Doenças das Plantas/microbiologia , Verticillium/fisiologia , Gossypium/genética , Extratos Vegetais , Resistência à Doença/fisiologia , Regulação da Expressão Gênica de Plantas
10.
New Phytol ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095050

RESUMO

The cell wall is the major interface for arbuscular mycorrhizal (AM) symbiosis. However, the roles of cell wall proteins and cell wall synthesis in AM symbiosis remain unclear. We reported that a novel wall-associated kinase 13 (GhWAK13) positively regulates AM symbiosis and negatively regulates Verticillium wilt resistance in cotton. GhWAK13 transcription was induced by AM symbiosis and Verticillium dahliae (VD) infection. GhWAK13 is located in the plasma membrane and expressed in the arbuscule-containing cortical cells of mycorrhizal cotton roots. GhWAK13 silencing inhibited AM colonization and repressed gene expression of the mycorrhizal pathway. Moreover, GhWAK13 silencing improved Verticillium wilt resistance and triggered the expression of immunity genes. Therefore, GhWAK13 is considered an immune suppressor required for AM symbiosis and disease resistance. GhWAK7A, a positive regulator of Verticillium wilt resistance, was upregulated in GhWAK13-silenced cotton plants. Silencing GhWAK7A improved AM symbiosis. Oligogalacturonides application also suppressed AM symbiosis. Finally, GhWAK13 negatively affected the cellulose content by regulating the transcription of cellulose synthase genes. The results of this study suggest that immunity suppresses AM symbiosis in cotton. GhWAK13 affects AM symbiosis by suppressing immune responses.

11.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138993

RESUMO

Verticillium wilt is a soil-borne vascular disease caused by the fungal pathogen Verticillium dahliae. It causes great harm to upland cotton (Gossypium hirsutum) yield and quality. A previous study has shown that Hen egg white lysozyme (HEWL) exerts strong inhibitory activity against V. dahliae in vitro. In the current study, we introduced the HEWL gene into cotton through the Agrobacterium-mediated transformation, and the exogenous HEWL protein was successfully expressed in cotton. Our study revealed that HEWL was able to significantly inhibit the proliferation of V. dahlia in cotton. Consequently, the overexpression of HEWL effectively improved the resistance to Verticillium wilt in transgenic cotton. In addition, ROS accumulation and NO content increased rapidly after the V. dahliae inoculation of plant leaves overexpressing HEWL. In addition, the expression of the PR genes was significantly up-regulated. Taken together, our results suggest that HEWL significantly improves resistance to Verticillium wilt by inhibiting the growth of pathogenic fungus, triggering ROS burst, and activating PR genes expression in cotton.


Assuntos
Gossypium , Verticillium , Gossypium/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Verticillium/metabolismo , Muramidase/metabolismo , Clara de Ovo , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Antioxidants (Basel) ; 12(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38136239

RESUMO

Verticillium wilt of olive (VWO) is one of the most widespread and devastating olive diseases in the world. Harnessing host resistance to the causative agent is considered one of the most important measures within an integrated control strategy of the disease. Aiming to understand the mechanisms underlying olive resistance to VWO, the metabolic profiles of olive leaves, stems and roots from 10 different cultivars with varying levels of susceptibility to this disease were investigated by liquid chromatography coupled to mass spectrometry (LC-MS). The distribution of 56 metabolites among the three olive tissues was quantitatively assessed and the possible relationship between the tissues' metabolic profiles and resistance to VWO was evaluated by applying unsupervised and supervised multivariate analysis. Principal component analysis (PCA) was used to explore the data, and separate clustering of highly resistant and extremely susceptible cultivars was observed. Moreover, partial least squares discriminant analysis (PLS-DA) models were built to differentiate samples of highly resistant, intermediate susceptible/resistant, and extremely susceptible cultivars. Root models showed the lowest classification capability, but metabolites from leaf and stem were able to satisfactorily discriminate samples according to the level of susceptibility. Some typical compositional patterns of highly resistant and extremely susceptible cultivars were described, and some potential resistance/susceptibility metabolic markers were pointed out.

13.
Front Plant Sci ; 14: 1261754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023867

RESUMO

The holobiont concept has revolutionized our understanding of plant-associated microbiomes and their significance for the development, fitness, growth and resilience of their host plants. The olive tree holds an iconic status within the Mediterranean Basin. Innovative changes introduced in olive cropping systems, driven by the increasing demand of its derived products, are not only modifying the traditional landscape of this relevant commodity but may also imply that either traditional or emerging stresses can affect it in ways yet to be thoroughly investigated. Incomplete information is currently available about the impact of abiotic and biotic pressures on the olive holobiont, what includes the specific features of its associated microbiome in relation to the host's structural, chemical, genetic and physiological traits. This comprehensive review consolidates the existing knowledge about stress factors affecting olive cultivation and compiles the information available of the microbiota associated with different olive tissues and organs. We aim to offer, based on the existing evidence, an insightful perspective of diverse stressing factors that may disturb the structure, composition and network interactions of the olive-associated microbial communities, underscoring the importance to adopt a more holistic methodology. The identification of knowledge gaps emphasizes the need for multilevel research approaches and to consider the holobiont conceptual framework in future investigations. By doing so, more powerful tools to promote olive's health, productivity and resilience can be envisaged. These tools may assist in the designing of more sustainable agronomic practices and novel breeding strategies to effectively face evolving environmental challenges and the growing demand of high quality food products.

14.
Front Plant Sci ; 14: 1220921, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023919

RESUMO

Verticillium wilt is one of the most crucial diseases caused by Verticillium dahliae that threatens the cotton industry. Statistical results showed that the return of cotton plants infected with V. dahliae to the field might be an essential cause of the continuous aggravation of cotton Verticillium wilt. The correlation among the cotton plants infected with V. dahliae returning to the field, the occurrence of Verticillium wilt, and the number of microsclerotia in rhizosphere soil need further investigation. A potted experiment was carried out to explore the effects of the direct return of cotton plants infected with Verticillium dahliae to the field on the subsequent growth and Verticillium wilt occurrence in cotton. As a risk response plan, we investigated the feasibility of returning dung-sand (i.e., insect excreta) to the field, the dung-sand was from the larvae of Protaetia brevitarsis (Coleoptera: Cetoniidea) that were fed with the V. dahliae-infected cotton plants. The results demonstrated that the return of the entire cotton plants to the field presented a promotional effect on the growth and development of cotton, whereas the return of a single root stubble or cotton stalks had an inhibitive effect. The return of cotton stalks and root stubble infected with V. dahliae increased the risk and degree of Verticillium wilt occurrence. The disease index of Verticillium wilt occurrence in cotton was positively correlated with the number of microsclerotia in the rhizosphere soil. The disease index increased by 20.00%, and the number of soil microsclerotia increased by 8.37 fold in the treatment of returning root stubble infected with V. dahliae to the field. No Verticillium wilt microsclerotia were detected in the feed prepared from cotton stalks and root stubble fermented for more than 5 days or in the transformed dung-sand. There was no risk of inoculation with Verticillium wilt microsclerotia when the dung-sand was returned to the field. The indirect return of cotton plants infected with V. dahliae to the field by microorganism-insect systems is worthy of further exploration plan of the green prevention and control for Verticillium wilt and the sustainable development of the cotton industry.

15.
Front Plant Sci ; 14: 1222596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900754

RESUMO

Potato late blight (causal agent Phytophthora infestans) is a disease of potatoes with economic importance worldwide. Control is primarily through field monitoring and the application of fungicides. Control of late blight with fungicides and host plant resistance is difficult, with documented cases of such control measures failing with the advent of new pathotypes of P. infestans. To better understand host plant resistance and to develop more durable late blight resistance, Quantitative Trait Locus/Loci (QTL) analysis was conducted on a tetraploid mapping population derived from late blight-resistant potato cultivar Palisade Russet. Additionally, QTL analyses for other traits such as Verticillium wilt and early blight resistance, vine size and maturity were performed to identify a potential relationship between multiple traits and prepare genetic resources for molecular markers useful in breeding programs. For this, one hundred ninety progenies from intercrossing Palisade Russet with a late blight susceptible breeding clone (ND028673B-2Russ) were assessed. Two parents and progenies were evaluated over a two-year period for response to infection by the US-8 genotype of P. infestans in inoculated field screenings in Corvallis, Oregon. In Aberdeen, Idaho, the same mapping population was also evaluated for phenotypic response to early blight and Verticillium wilt, and vine size and maturity in a field over a two-year period. After conducting QTL analyses with those collected phenotype data, it was observed that chromosome 5 has a significant QTL for all five traits. Verticillium wilt and vine maturity QTL were also observed on chromosome 1, and vine size QTL was also found on chromosomes 3 and 10. An early blight QTL was also detected on chromosome 2. The QTL identified in this study have the potential for converting into breeder-friendly molecular markers for marker-assisted selection.

16.
Plants (Basel) ; 12(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896074

RESUMO

Verticillium wilt is a soil-borne fungal disease that affects olive trees (Olea europaea) and poses a serious threat to their cultivation. The causal agent of this disease is Verticillium dahliae, a pathogen that is difficult to control with conventional methods. Therefore, there is a need to explore alternative strategies for the management of Verticillium wilt. In this study, we aimed to isolate and characterize actinobacteria from the rhizosphere of olive trees that could act as potential biocontrol agents against V. dahliae. We selected a Streptomyces sp. OR6 strain based on its in vitro antifungal activity and its ability to suppress the pathogen growth in soil samples. We identified the main active compound produced by this strain as albocycline, a macrolide polyketide with known antibacterial properties and some antifungal activity. Albocycline was able to efficiently suppress the germination of conidiospores. To our knowledge, this is the first report of albocycline as an effective agent against V. dahliae. Our results suggest that Streptomyces sp. OR6, or other albocycline-producing strains, could be used as a promising tool for the biological control of Verticillium wilt.

17.
BMC Plant Biol ; 23(1): 501, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37848871

RESUMO

BACKGROUND: The cotton industry suffers significant yield losses annually due to Verticillium wilt, which is considered the most destructive disease affecting the crop. However, the precise mechanisms behind this disease in cotton remain largely unexplored. METHODS: Our approach involved utilizing transcriptome data from G. australe which was exposed to Verticillium dahliae infection. From this data, we identified ethylene-responsive factors and further investigated their potential role in resistance through functional validations via Virus-induced gene silencing (VIGS) in cotton and overexpression in Arabidopsis. RESULTS: A total of 23 ethylene response factors (ERFs) were identified and their expression was analyzed at different time intervals (24 h, 48 h, and 72 h post-inoculation). Among them, GauERF105 was selected based on qRT-PCR expression analysis for further investigation. To demonstrate the significance of GauERF105, VIGS was utilized, revealing that suppressing GauERF105 leads to more severe infections in cotton plants compared to the wild-type. Additionally, the silenced plants exhibited reduced lignin deposition in the stems compared to the WT plants, indicating that the silencing of GauERF105 also impacts lignin content. The overexpression of GauERF105 in Arabidopsis confirmed its pivotal role in conferring resistance against Verticillium dahliae infection. Our results suggest that WT possesses higher levels of the oxidative stress markers MDA and H2O2 as compared to the overexpressed lines. In contrast, the activities of the antioxidant enzymes SOD and POD were higher in the overexpressed lines compared to the WT. Furthermore, DAB and trypan staining of the overexpressed lines suggested a greater impact of the disease in the wild-type compared to the transgenic lines. CONCLUSIONS: Our findings provide confirmation that GauERF105 is a crucial candidate in the defense mechanism of cotton against Verticillium dahliae invasion, and plays a pivotal role in this process. These results have the potential to facilitate the development of germplasm resistance in cotton.


Assuntos
Arabidopsis , Ascomicetos , Verticillium , Gossypium/genética , Gossypium/metabolismo , Arabidopsis/genética , Lignina/metabolismo , Peróxido de Hidrogênio/metabolismo , Verticillium/fisiologia , Ascomicetos/metabolismo , Etilenos , Resistência à Doença/genética , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
18.
Plant Physiol Biochem ; 202: 107995, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666042

RESUMO

Plants have developed intricate defense mechanisms in response to fluctuating environmental cues, including the use of microRNA (miRNA) as post-transcriptional regulators. However, the specific mechanisms through which miRNA contributes to disease resistance remain largely elusive. While the miR171-SCLs have been investigated in an eclectic array of plants, there has been a notable scarcity of research specifically focused on cotton (Gossypium hirsutum). In our previous miRNA-sequencing analysis, we found that ghr-miR171a displayed a differential response to infections by Verticillium dahliae. In this study, we further investigated the function of the miR171a-SCL6 module in cotton during V. dahliae infection. The ghr-miR171a was confirmed to direct the cleavage of GhSCL6 mRNA in the post-transcriptional process, as evidenced by 5' RLM-RACE, ß-glucuronidase (GUS) histochemical staining and enzyme activity assay. Interestingly, we found that overexpressing ghr-miR171a reduced cotton plants' resistance to V. dahliae, while suppressing ghr-miR171a increased the plants' defense capacity. The GhSCL6 protein, when fused with green fluorescent protein (GFP), localizes in the cell nucleus, indicating its potential role in gene regulation. This was further corroborated by yeast two-hybrid assays, which verified GhSCL6's transcriptional activation ability. Through quantitative reverse transcriptase PCR (qRT-PCR), luciferase (LUC) fluorescence, and yeast one-hybrid assays, we found that GhSCL6 binds to the GT-box element of the GhPR1 promoter, activating its expression and thereby enhancing plant disease resistance. Taken together, our findings demonstrate that the cotton miR171a-SCL6 module regulates Verticillium wilt resistance in plants through the post-transcriptional process. This insight may offer new perspectives for disease resistance strategies in cotton.


Assuntos
Gossypium , MicroRNAs , Gossypium/genética , Resistência à Doença/genética , Núcleo Celular , Ensaios Enzimáticos , MicroRNAs/genética
19.
Plant Sci ; 337: 111875, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37769874

RESUMO

Bicupin domain protein (BCD) family, an important component of Cupin domain superfamily, plays important roles in oxalic acid (OA) degradation and stress responses in high plants. However, no studies have been reported on the Cupin domain family in cotton up till now. In our study, a total 110 proteins including Cupin domain were identified from the upland cotton (Gossypium hirsutum). Among them, 17 proteins contained Bicupin domain. Subsequently, we found that V. dahliae produces OA leading to cotton leaf wilting. RT-qPCR analysis of GhBCDs revealed that OA and V. dahliae Vd080 significantly enhanced the expression of GhBCD11. The Virus-induced gene silencing and overexpression analysis showed that GhBCD11 positively regulates plant resistance to V. dahliae. Subcellular localization showed GhBCD11 located on the plasma membrane. The analysis of expression pattern showed that GhBCD11 can be induced via hormone-mediated signal pathway including salicylic acid (SA), ethephon (ET), methyl jasmonate (JA) and abscisic acid (ABA). In addition, we identified an interaction between 60 S ribosomal protein GhRPL12-3 and GhBCD11 by yeast double hybridization. Overall, this is the first study, where we identified Cupin domain family in cotton, clarified the role of GhBCD11 in cotton for resistance to V. dahliae and found an interaction between GhRPL12-3 and GhBCD11.

20.
BMC Plant Biol ; 23(1): 421, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697254

RESUMO

BACKGROUND: The receptor-like cytoplasmic kinases subfamily VII (RLCK-VII) is critical in regulating plant growth, development, and pattern-triggered immunity. However, a comprehensive exploration of these genes in the allotetraploid Gossypium hirsutum is still lacking. This study aimed to identify RLCK-VII genes in G. hirsutum and investigate their evolutionary history, structural features, expression patterns, and role in plant defense. RESULTS: Seventy-two RLCK-VII genes in the G. hirsutum genome were unveiled and classified into nine groups following their phylogenetic analysis with Arabidopsis thaliana. Group VII-1 was the largest, accounting for 28%, while Groups VII-2 and VII-3 had only one member each. The analysis using MCScanX revealed that these 72 genes formed 166 collinear gene pairs and were resided on 26 chromosomes of G. hirsutum, suggesting that they were derived from whole genome segmental duplication events. Their calculated Ka/Ks values were below one, implying the occurrence of purification selection during the evolution and inhibition of gene function differentiation/loss. All members of the RLCK-VII subfamily possessed two conserved domains, PKinase-Tyr and PKinase, and several conserved PBS1 kinase subdomains, individually included in one of the ten motifs identified using MEME. The RNA-Seq results showed that RLCK-VII genes exhibited different spatiotemporal expression, indicating their involvement in cotton growth, development, and defense responses to Verticillium dahliae. The transcription patterns of RLCK-VII genes found by RNA-Seq were further validated using qRT-PCR assays after inoculating "20B12" (cotton cultivar) with "V991" (V. dahliae). The virus-induced gene silencing (VIGS) assays uncovered that two RLCK-VII genes (Gohir.A13G227248 and Gohir.A10G219900) were essential to G. hirsutum resistance to Verticillium wilt. CONCLUSIONS: These observations offer valuable insight into the attributes and roles of RLCK-VII genes in G. hirsutum, potentially enable the breeding of new cotton cultivars with enhanced resistance to Verticillium wilt.


Assuntos
Arabidopsis , Verticillium , Gossypium/genética , Filogenia , Melhoramento Vegetal , Citoplasma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA